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Asteroid 2006 RH120 Temporary Capture
▪ Discovered 14 September 2006

▪ ~5 m Diameter

▪ Orbited Earth 3 times (~1 year)

▪ Closest perigee ~0.7 Lunar Distances

▪ Minimoon: Granvik, Vaubaillon and Jedicke 2012 
(may be abundant!)

▪ Prime target for low cost rendezvous, retrieval 
missions.

▪ Pre & Post Capture Phase (2016 Work):                                             
Dynamics controlled by invariant manifolds of 
resonant orbits and L1 & L2 halo orbits.

▪ Capture Phase Surprising Result (Current Work):

Sky & Telescope

From L1To L2

Eccentricity of Earth orbit dominates the capture dynamics

▪ Elliptic Restricted 3 Body Model provides better overall performance than restricted 4 body models.

▪ Developed new metric for comparison of orbits in different dynamical models: 
Modified Dynamic Time Warping

▪ Derived from shape analysis of signal processing
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Pre & Post Capture by Invariant Manifolds (2016)

▪Temporary capture of Asteroid 2006 
RH120 enabled by repeated resonant 
close encounters with Earth 

▪Invariant manifolds control asteroid 
capture
▪ Captured via stable manifold of L1

North Halo Orbit

▪ Escaped via unstable manifold of L2
South Halo Orbit

MANIFOLD TRANSIT DYNAMICS

ASTEROID CAPTURE DYNAMICS

ASTEROID ESCAPE DYNAMICS

V
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3 Dynamical Systems Models
Inertial CR3BP & ER3BP Rotating CR3BP & 

Pulsating ER3BP
Rotating BCP

▪CR3BP and ER3BP rotating frames 
look identical
▪ Pulsating coordinates keep m1

and m2 fixed on ER3BP x-axis

▪BCP places m2-m3 barycenter 
where m2 is in CR3BP frame

▪CR3BP has Jacobi Integral
▪ Forbidden Region fixed

▪BCP & ER3BP no Integral
▪ Forbidden Region variable
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Segment  Definitions & Approach

▪ Show which dynamical systems provides best model for each orbit phase,  
best model for coupling between different orbit phases.
▪ Coupling of Precapture Phase with Capture Phase orbits: Segment 1

▪ Capture Phase orbit by itself: Segment 2

▪ Coupling of Postcapture Phase with Capture Phase orbits: Segment 3 

SUNSUN SUN EARTHEARTH

SEGMENT 1 SEGMENT 2 SEGMENT 3

EARTH
L2L1

EARTH

MOON
ORBIT
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Segment  Definitions
▪ Segment 1

▪ Interior resonance + temporary capture

▪Segment 2
▪ Temporary capture

▪Segment 3
▪ Temporary capture + exterior resonance

SUNSUN SUN EARTHEARTH

SEGMENT 1 SEGMENT 2 SEGMENT 3

EARTH
L2L1

EARTH

MOON
ORBIT
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State Coherence Parameter Q
▪Conversion of ephemeris to 
rotating frame may be incoherent
▪ i.e. velocity not tangent to path 

▪Integration of incoherent state 
yields wrong results
▪ Red curve is incoherent

▪ Green curve is coherent

▪Coherence Parameter 𝑄 = ෝ𝒗 ∙ 𝒅
▪ 𝑄 = 1, fully coherent

▪ 𝑄 = 0, fully incoherent

റ𝑟(𝑡1)

റ𝑟(𝑡2)
റ𝑣(𝑡1)

റ𝑣(𝑡2)

റ𝑟2
റ𝑟1

റ𝑣1

መ𝑑

ො𝑣

റ𝑣2

መ𝑑 = റ𝑟2− റ𝑟1
റ𝑟2− റ𝑟1

ො𝑣 = 𝑣2+ 𝑣1
𝑣2+ 𝑣1
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Frame Conversion Coherence Curve
▪Convert ephemeris state to rotating 
frame and units

▪Compute coherence across 
trajectory

▪Select “optimal” reference point Q*
from local coherence maxima

▪Integrate in different models 
forward and/or backward in time 
using reference Q*

▪Compute similarity with DTW

SELECTED 
REFERENCE 
POINT Q*

LOCAL COHERENCE MAXIMA
Q for SEGMENT 2

C
O

H
ER

EN
C

E 
PA

R
A

M
ET

ER
 Q
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Comparing Chaotic Orbits

𝒂(𝒕𝟏)

𝒂(𝒕𝟑)

𝒂(𝒕𝟐)

𝒃(𝒕𝟏)

𝒃(𝒕𝟑)

𝒃(𝒕𝟐)

▪Nearby chaotic orbits can diverge in 
time quickly but retain similar shape
▪e.g. invariant manifolds

▪Need shape comparison metric that 
ignores time
▪DYNAMIC TIME WARPING



1001/11/18 Brian.Danny.Anderson@gmail.com

Dynamic Time Warping

Linear Time

Original Parametric Curves

▪How similar is curve a to curve b?

▪Shape only, ignore time stretching

▪Locate sequence of pairs that minimizes cumulative distance 
between curves (for details see Sakoe & Chiba [1978])

Si
gn

al
 o

r 
P

o
si

ti
o

n

𝒂(𝒕𝟏)

𝒂(𝒕𝟐) 𝒂(𝒕𝟑)

𝒃(𝒕𝟏)

𝒃(𝒕𝟑)𝒃(𝒕𝟐) 𝒃(𝒕𝟒)
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Dynamic Time Warping

Warped Time

▪How similar is curve a to curve b?

▪Shape only, ignore time stretching

▪Locate sequence of pairs that minimizes cumulative distance 
between curves (for details see Sakoe & Chiba [1978])

▪Note that a point on one curve can repeat

Parametric Curves in 
Warped Time
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𝒃(𝒕𝟏)

𝒃(𝒕𝟑) 𝒃(𝒕𝟒)𝒃(𝒕𝟐)

𝒂(𝒕𝟏)

𝒂(𝒕𝟐) 𝒂(𝒕𝟑)

𝒂(𝒕𝟑)
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DTW Applied to Trajectories

DIVERGENCESIMILAR PATH

REFERENCE TRAJ.

INTEGRATED TRAJ.

POINTS OF 
COMPARISON

▪Lines show points of comparison between trajectories a and b

▪When the path of two curves diverge significantly, points of comparison 
become extremely stretched

INTEGRATED TRAJ.

REFERENCE TRAJ.

POINTS OF 
COMPARISON
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True Asteroid Orbit Geometry

SUN
EARTH

L2L1 MOON
ORBIT

SUN EARTH

SEGMENT 1

SEGMENT 3
SEGMENT 2

FORBIDDEN 
REGION
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Results Geometry

CR3BP

▪Graphical comparison results for segment 1

▪First we show only the asteroid trajectory in rotating frame

Average DTW distance

Asteroid Trajectory
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Results Geometry

CR3BP

▪Graphical comparison results for segment 1

▪First we show only the asteroid trajectory in rotating frame

▪Then show the integrated trajectory in the CR3BP

Average DTW distance

Asteroid Trajectory

Integrated Trajectory
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Results Geometry

CR3BP

Asteroid Trajectory

Integrated Trajectory

Connectors Between 
Comparison Points

▪Graphical comparison results for segment 1

▪First we show only the asteroid trajectory in rotating frame

▪Then show the integrated trajectory in the CR3BP

▪Last show points of comparison used by the DTW algorithm as connectors

Average DTW distance
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Results Geometry

BCP

▪Repeat procedure for BCP model results

▪Asteroid trajectory

Average DTW distance

CR3BP
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Results Geometry

CR3BP BCP

▪Repeat procedure for BCP model results

▪Asteroid trajectory

▪Integrated trajectory

Average DTW distance
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Results Geometry

CR3BP BCP

▪Repeat procedure for BCP model results

▪Asteroid trajectory

▪Integrated trajectory

▪Points of comparison
Average DTW distance
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Results Geometry

CR3BP BCP ER3BP

▪Repeat procedure for ER3BP model results

▪Asteroid trajectory

Average DTW distance



2101/11/18 Brian.Danny.Anderson@gmail.com

Results Geometry

CR3BP BCP ER3BP

▪Repeat procedure for ER3BP model results

▪Asteroid trajectory

▪Integrated trajectory

Average DTW distance
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Results Geometry

CR3BP BCP ER3BP

▪Repeat procedure for ER3BP model results

▪Asteroid trajectory

▪Integrated trajectory

▪Points of comparison

▪For this segment, the ER3BP matched the Asteroid Trajectory best.
Average DTW distance
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Results Geometry

CR3BP

Asteroid Trajectory

▪Graphical comparison results for segment 1

▪First we show only the asteroid trajectory in rotating frame

Average DTW distance
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Results Geometry

CR3BP

Asteroid Trajectory

Integrated Trajectory

▪Graphical comparison results for segment 1

▪First we show only the asteroid trajectory in rotating frame

▪Then show the integrated trajectory in the CR3BP

Average DTW distance
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Results Geometry

CR3BP

Asteroid Trajectory

Integrated Trajectory

Connectors Between 
Comparison Points

▪Graphical comparison results for segment 1

▪First we show only the asteroid trajectory in rotating frame

▪Then show the integrated trajectory in the CR3BP

▪Last show points of comparison used by the DTW algorithm as connectors

Average DTW distance
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Results Geometry

BCP

▪Repeat procedure for BCP model results

▪Asteroid trajectory

Average DTW distance
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Results Geometry

CR3BP BCP

▪Repeat procedure for BCP model results

▪Asteroid trajectory

▪Integrated trajectory

Average DTW distance
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Results Geometry

CR3BP BCP

▪Repeat procedure for BCP model results

▪Asteroid trajectory

▪Integrated trajectory

▪Points of comparison
Average DTW distance



2901/11/18 Brian.Danny.Anderson@gmail.com

Results Geometry

CR3BP BCP ER3BP

▪Repeat procedure for ER3BP model results

▪Asteroid trajectory

Average DTW distance
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Results Geometry

CR3BP BCP ER3BP

▪Repeat procedure for ER3BP model results

▪Asteroid trajectory

▪Integrated trajectory

Average DTW distance
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Results Geometry

CR3BP BCP ER3BP

▪Repeat procedure for ER3BP model results

▪Asteroid trajectory

▪Integrated trajectory

▪Points of comparison

▪For this segment, the ER3BP matched the Asteroid Trajectory best.
Average DTW distance
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Result Summary
Computed parameters

◦ CR3BP is never the best model

◦ ER3BP best for segment 3

◦ BCP best for segment 1,2

◦ BCP models temp. capture dynamics 
well, even unadjusted

Tuned parameters
◦ CR3BP is never the best model

◦ ER3BP best for segment 1,3
◦ Only requires small adjustment (~10 deg)

◦ BCP best for segment 2

◦ ER3BP nearly as good as BCP for 
segment 2

◦ Segment 2 required large adjustment 
for both BCP and ER3BP
◦ BCP already good, small improvement

◦ ER3BP large improvement
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Conclusion
▪BCP models temporary capture well using computed parameters

▪ To be expected, higher fidelity of local perturbation

▪ER3BP still models temporary capture phase well if slightly adjusted (see adjusted 
Seg. 1 & 3)
▪ Indicates Lunar perturbation was not dominant

▪ Temp. capture lasted 1 year, so effects of eccentricity non-negligible

▪Eccentricity and Lunar perturbations approximately equivalent during temporary 
capture
▪ Eccentricity effects increase due to length of temporary capture

▪ Lunar effect decrease due to lack of close approaches

▪Eccentricity dominates exterior and interior resonance phases (in Seg. 1 & 3)
▪ To be expected, Earth-Moon can be approximated as combined point mass.

▪Separations between models and reality are still large
▪ Useful for global dynamical behavior analysis

▪ Not useful for accurate determination of single particle
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Future Work

▪Compare ephemeris and simple model agreement for fictitious 
temporary capture asteroids (larger datasets)
▪ Propagate in ephemeris model

▪ Propagate in simple models

▪ Compute similarity

▪Produce combined BCP and ER3BP model that can model the majority 
of temporary capture objects well.
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Backup Slides
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Complete Numerical Results

▪Green boxes are the best match (smallest mean DTW distance)

▪ER3BP orders of magnitude better than BCP for Seg. 1 & 3 when tuned

▪BCP best in all cases for Seg. 2, but ER3BP very similar when tuned
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Complete Numerical Results

▪Green boxes are the best match (smallest mean DTW distance)

▪ER3BP orders of magnitude better than BCP for Seg. 1 & 3 when tuned

▪BCP best in all cases for Seg. 2, but ER3BP very similar when tuned
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Result Summary

Computed parameters
◦ CR3BP is never the best model

◦ ER3BP best for segment 3

◦ BCP best for segment 1,2

◦ BCP models temp. capture 
dynamics well, even unadjusted

Tuned parameters
◦ CR3BP is never the best model

◦ ER3BP best for segment 1,3
◦ Only requires small adjustment (~10 deg)

◦ BCP best for segment 2

◦ ER3BP nearly as good as BCP for 
segment 2

◦ Segment 2 required large 
adjustment for both BCP and 
ER3BP
◦ BCP already good, small improvement

◦ ER3BP large improvement
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Results table

CR3BP BCP ER3BP
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Results table

CR3BP BCP ER3BP
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CR3BP BCP ER3BP
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CR3BP BCP ER3BP
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CR3BP BCP ER3BP
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Results table

CR3BP BCP ER3BP
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Results table

CR3BP BCP ER3BP
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Results table

CR3BP BCP ER3BP
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Results table

CR3BP BCP ER3BP
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Results table

CR3BP BCP ER3BP
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Results table

CR3BP BCP ER3BP
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Results table

CR3BP BCP ER3BP
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Dynamic Time Warping

Warped Time

Original Parametric Curves

▪How similar is curve a to curve b?

▪Shape only, ignore time stretching
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Analysis of Asteroid 2006 RH120

▪Convert DE431 Ephemeris data to CRTBP
▪ Variable Method

▪ Fixed Method

▪Estimate Jacobi constant for Pre- and Post-
Capture Phases
▪ Cpre = 3.000228226120707

▪ Cpost = 3.000425683288712

▪Estimate Pre- and Post-Capture Resonances 
by 2 methods
▪ CRTBP method

▪ 2 body method

▪Match Asteroid trajectory to invariant 
manifolds of periodic CRTBP orbits
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Pre-Capture Resonance

▪July 1, 1979 – May 23, 2006
▪ Asteroid captured 5/23/2006

▪ Crossed L1 plane 

▪29 heliocentric orbits

▪27 years

▪29:27 mean motion resonance

▪Previous encounter close enough to 
switch resonance

▪2-body period indicates 43:40 mean 
motion resonance
▪ unlikely

EARTH ORBIT 
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Post-Capture Resonance

▪July 28, 2007 – November 1, 2028
▪ Asteroid escaped 7/28/2007

▪ Crossed L2 plane

▪20 heliocentric orbits

▪21 years

▪20:21 mean motion resonance

▪Future encounter close enough to 
switch resonance

▪2-body period also indicates 20:21 
mean motion resonance

EARTH ORBIT 



5801/11/18 Brian.Danny.Anderson@gmail.com

Resonance Hopping

▪Resonances approximated 1950-
2050

▪Keplerian analysis shows several 
resonance cycles both Pre- and 
Post-Capture

▪Indicates several repeated near-
Earth encounters

▪Increasing semimajor axis

DE431

2006
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Earth Approach  L1 North Halo Orbit

▪Estimated C≈3.000228226120707

▪Examined everal L1 periodic orbits
▪ Planar Lyapunov

▪ Vertical Lyapunov

▪ North/South Halo

▪Visually compared stable manifolds 
to Asteroid trajectory

▪“Best” match to Northern Halo 
orbit

▪Selected single trajectory on 
manifold to match Asteroid 
trajectory

FORBIDDEN REGION

FORBIDDEN REGION
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Earth Escape L2 South Halo Orbit

▪C≈3.000425683288712

▪Several L2 periodic orbits found
▪ Planar Lyapunov

▪ Vertical Lyapunov

▪ North/South Halo

▪Unstable manifolds compared 
visually to Asteroid trajectory

▪Chosen match to Southern Halo 
orbit

▪Single trajectory on manifold 
selected

FORBIDDEN REGION

FORBIDDEN REGION



6101/11/18 Brian.Danny.Anderson@gmail.com

Conclusions

▪Temporary Capture of Asteroid 2006 RH120 seems to be controlled by 
the invariant manifolds of periodic orbits in the CRTBP
▪ Approach through stable manifold of L1 North Halo Orbit

▪ Escape through unstable manifold of L2 South Halo Orbit

▪Resonance cycles between repeated Earth encounters are long with 
mean motion resonances near 1:1

▪Repeated mean motion resonance transitions near 1:1 resonance
▪ This allows for trajectories with low energy levels near libration orbits

▪ This enables temporary captures by Earth

▪Asteroid had several near encounters in the past and is predicted to 
have more in the future.
▪ Each encounter raises the heliocentric semimajor axis

▪ Largest change occurred during Temporary Capture
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𝑅

𝑉

Circular Restricted Three Body Problem (CRTBP)
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Circular Restricted Three Body Problem (CRTBP)
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Forbidden 
Region

+ +

Earth
L1 L2

EARTH
SUN

Invariant Manifolds Transit Dynamics
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Forbidden 
Region

+ +

Earth
L1 L2

EARTH
SUN

Invariant Manifolds Transit Dynamics
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Forbidden 
Region

+ +

Earth
L1 L2

EARTH
SUN

Invariant Manifolds Transit Dynamics
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Forbidden 
Region

+ +

Earth
L1 L2

EARTH
SUN

Invariant Manifolds Transit Dynamics
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Example of Rapid Orbital Change

▪ Comet 39P/Oterma

▪ Repeated “hopping” between resonant orbits

▪ Heteroclinic connections between resonant orbits make this possible

Koon, Lo, Marsden, Ross

Comet Trajectory
Inertial Frame

Jupiter Orbit

Hilda 3:2 
Resonance

2:3 Resonance

Sun
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Lunar Interactions

▪Lunar interactions during 
Temporary Capture considered

▪Effects causing rapid changes not 
likely

▪Small perturbations allowed to 
accumulate
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Conversion Method 1
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Conversion Method 2
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Minimoons: Prime Targets for 
Rendezvous & Retrieval

▪Asteroid 2006 RH120 first observed temporary moon of Earth

▪Numerical studies indicate that they may be abundant
▪ Granvik, Vaubaillon and Jedicke 2012: Minimoon

▪ At least 1 Minimoon of diameter<1 m at any given time

▪ Astronomers working to verify this NEO population

▪Prime targets for potential asteroid rendezvous or retrieval
▪ Minimoons have low relative speed during Temporary Capture

▪ Would require less ΔV, time, cost for rendezvous or capture into long-term 
orbit

▪We do not fully understand the dynamics involved in Temporary 
Capture
▪ How to identify & locate potential Minimoons in NEO population?

▪ What controls capture & escape of Minimoons?


